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Abstract
N-body simulations give us the ability to model the uni-
verse on scales that would be otherwise impossible. Here
I describe and implement the Particle-Mesh method of
simulating motion under the influence of gravity. The ac-
curacy of the model is tested: comparing the results of a
top hat collapse to the analytical solution, and the effect
of periodic boundaries is negated by adding buffer par-
ticles to the corners of the simulation. Model universes
are simulated to analyse how the formation of structure
changes with particles of different masses. It is found that
when particle mass is increased, the size of the clusters
decreases, and the sharing of particles between the clus-
ters increases.

1 Introduction
The physics of Newtonian gravity is incredibly simple,
and can be described by the instantly recognisable law of
gravitation. However, when trying to evolve this system
in time, a differential equation is formed that is very diffi-
cult to solve. This is because the total force being the sum
of contributions made by every particle in the system. Re-
lating the total force to the acceleration of a particle this
differential equation is written,

r̈j = −G
N∑
i6=j

mi

|~ri − ~rj |2
r̂, (1)

where N is the total number of particles in the system.
Notice that for N particles this will result in a system of
N coupled non-linear second order differential equations.

Not only are these equations difficult to solve, other than
N = 0, 1 which are trivial, N = 2 is the only exactly
solvable case 1. The complexity of these systems hin-
dered progress in the field until around 1980, when the
advent of computers meant that numerical methods could
be used to solve systems with upwards of 100 particles.
This was done using the first and most straight forward ap-
proach, the Particle-Particle (PP) method. The PP method
computes the acceleration of each particle using equation
(1), and then particles are propagated forward using an
integration scheme such as the Runge Kutta 4th Order,
or a symplectic method such as Verlet Integration. This
method is inefficient with O(N2) operations per time-
step[4]. Due to this large number of operations, the PP
method can only, at least with reasonable speed, simu-
late a system of less than 1000 particles. For system sizes
within this range the PP method is the fastest, however
for much larger systems a new more efficient method had
to be developed. The Particle-Mesh (PM) method tackles
the problem from a slightly different angle by consider-
ing the potentials of the system and solving the Poisson
equation [3],

∇2φ = 4πGρ, (2)

where φ is the gravitational potential energy and ρ is
the mass density. The efficiency of the PM method is
O(N logN) meaning it can run simulations for particle
numbers in the millions. There is a small catch, in that the
potential and mass density fields have to be discretised.
For a computer to solve equation (2) the fields must be
approximated as distributions on a grid. As a result,

1There exists solutions for N = 3 but these are edge cases that
require very specific initial conditions, see [2]
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this method suffers inaccuracies on short length scales
(relative to the grid size) and is most accurate over large
distances, which gives PM applications in the evolution
of the universe and the formation of large structures. This
method is convenient, as it naturally incorporates peri-
odic boundary conditions, allowing effectively infinite
universes to be simulated. It was famously used2 to prove
that the universe must be dominated by a cold dark matter
- ruling out neutrinos as a dark matter particle candidate
[1].

This project aims to describe the theory behind a
PM implementation, then investigate its accuracy by
comparing the results of a top hat collapse to the ana-
lytical solution. Using the simulation, various model
universes will be analysed, to observe the effect particle
masses have on the formation of large structures.

2 The Particle-Mesh Method
This method considers the Poisson equation, (2). If we
had known the potential and were trying to find the mass
density this would be a rather easy equation to solve, just
taking the second derivative. However, since we are trying
to solve for the potential, this requires a very computation-
ally expensive operation called a convolution. Directly
solving using a convolution would be slow, therefore a
mathematical ’trick’ is used. Convolutions are multipli-
cations in Fourier space. Taking the Fourier transform
of (2), the Poisson equation becomes an algebra prob-
lem and the potential can be solved for very easily. Then
by taking the inverse and transforming back into posi-
tion space the potential has been solved for, with the most
costly operation being a Fourier transform[7]. An outline
of the entire PM method could be given as so,

1. Find the mass density.

2. Fourier transform the field.

3. Solve in momentum space.

4. Inverse Fourier transform back to position space.

5. Interpolate the forces onto the particles.
2In actuality a slightly modified method, P 3M , that has increased

accuracy at short length scales and close encounter interactions was used

splitting PM into 5 distinct sections. An implementa-
tion of PM would follow this structure closely with slight
deviations by user preference.

2.1 Mass Density Distribution
Since the purpose of the PM method is to be efficiently
ran on a computer, approximations must be made that
are unavoidable due to the nature of computer systems.
The mass density in reality is a continuous scalar field,
however, for use within PM it must be approximated as
a distribution. This requires laying a mesh over the top
of the particle system, and summing the contributions
made by every particle that lies within one grid cube,
then dividing by the volume of each cube for the density.
The required resolution of this mesh is a fine balance
between the accuracy and speed desired by the user. The
most efficient values would be powers of 2, which shall
be explained further in §2.2. In my implementation of
the algorithm I use a grid size of 643, this is low enough
for real time simulations and high enough for a sufficient
level of accuracy[4].

Another decision which must be made when form-
ing the mass density distribution is the mass assignment
scheme. This method is one which the algorithm uses
to assign the mass to the grid cubes. The method used
in my implementation, and by far the simplest, is the
Nearest Grid Point (NGP) scheme[7]. The scheme takes
the position of the particle and finds the cube that the
particle is contained within, then assigns all of the mass
of the particle into that grid cube. This simplistic scheme
has issues, see §5, which motivated the development of
alternative schemes such as Cloud in Cell (CIC)[4]. This
smooths the distribution, by assigning a fraction of mass
to the neighbouring grid cubes. This can been seen much
clearer visually in Figure (1). An important caveat is that
the same scheme used to assign the masses to the mesh
must also be used to interpolate the force on the particle.
If different methods are used, momentum is no longer
conserved and simulation accuracy is lost[4].

2.2 Solving in Fourier Space
To find the potential distribution we solve in Fourier
space. My implementation uses a Fast Fourier Trans-
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Figure 1: The division of mass into grid points for the
NGP and CIC schemes. Notice that in NGP although P
is very close to the edge of x all the mass is added to x,
whereas in CIC this mass is shared with x + 1 making
the mass density distribution more accurately represent
the locations of masses.

form (FFT) routine. A small problem is that the Poisson
equation, (2), is continuous in nature and acts on a field.
When using a distribution, finite difference methods must
be used. In the 1D case this gives

φ(x+ 1)− 2φ(x) + φ(x− 1)

(∆x)2
= 4πGρ(x). (3)

Taking the Fourier transform of this,

(eik∆x − 2 + e−ik∆x)

(∆x)2
Φ(k) = 4πGP (k), (4)

where the capital letters represent the Fourier transform
of a function. As previously stated, now in Fourier space
this equation becomes algebraic, and the potential can be
solved for. We find,

Φ(k) = −4πG

K2
P (k). (5)

with the definition 3,

K =
sin(πk∆x)

π∆x
. (6)

It can also be seen that in the limiting case,

lim
∆x→0

sin(πk∆x)

π∆x
= k. (7)

That is, as the spacing between the grid cubes becomes
infinitely small, the finite difference method becomes the
continuous case, validating the approximation when made
for small grid spacing.
Equation (5) is the 1D case, my implementation in 3D
solves this equation extended into all 3 degrees of free-
dom,

Φ(k, l,m) = − 4πG

K2 + L2 +M2
P (k, l,m). (8)

where k, l and m are the wave vectors in 3D Fourier
space. All that remains is to take the inverse Fourier trans-
form of (8) to find the potential in position space. In my
implementation I chose again to utilise the FFT algorithm
(more accurately, an iFFT at this stage) for efficiency. Ef-
ficiency becomes very important in 3D, as for a single dis-
tribution the FFT must be ran for each individual row and
column etc, which vastly increases the operation count.
The FFT has maximum efficiency when the number of
grid points is a power of 2. Since the bulk of this simula-
tion relies on an FFT, simulations that have a mesh with
2n points in each dimension will vastly decrease compu-
tation time.

2.3 Interpolating Forces
It was stated in §2.1 that the scheme used to assign mass
to the mass density distribution must also be used to cal-
culate the force on a particle, in order to conserve momen-
tum. This only requires that the same fraction of potential

3This is sometimes defined as K = k sinc (πk∆x), however I
found in my implementation that the sinc function was more compu-
tationally expensive than a well optimised sin function with a lookup-
table. Therefore, I preferred the definition in equation (6) for efficiency.
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from each grid cube summed is the same as the fraction
of mass distributed. For NGP, as used in my implementa-
tion, all the mass is assigned to a single grid cube, so this
fractioning of potential can be ignored.
Thus far, we have found the potential at every point on
the mesh, to move the particles forward the force must be
found. We can use the relationship,

~F = −∇φ. (9)

and then for the acceleration,

~a = − 1

m
∇φ. (10)

A similar problem to that in §2.2 arises here as equation
(10) is valid for a field and our potential is a distribution.
Finite difference methods must but employed again to ap-
proximate the derivative. A naive approach would be to
use,

ax = − (φx+1 − φx)

m∆x
, (11)

in each dimension. Here, the subscript denotes which
grid cube the value of the potential should be taken from.
However, this leads to the problem of self-acting forces.
A self-acting force is caused, which causes the particle to
feel the force of its own presence. (11) uses grid cube x
which is the same grid cube that the particles own mass
contributes to, meaning that if there was only one particle
in the simulation the particle would still feel a force. The
solution to this is rather simple. Instead of the grid cube
that contains the particle being used the cubes either side
are used. Due to the isotropy of the gravitational force,
the force caused by the particle itself is exactly cancelled
out and only contributions made by other particles remain.
Mathematically this is written[7],

ax = − (φx−1 − φx+1)

2m∆x
(12)

Using this, the acceleration in all directions can be cor-
rectly determined and used to update the particle position.
The integration scheme my implementation uses is a very
simple first order solver, which assumes constant acceler-
ation and velocity between each time-step. This is suffi-
cient, as the goal of the PM method is to simulate large
scale motion. This integration scheme can be written,

~vt+1 = ~vt + ~a∆t,

~rt+1 = ~rt + ~vt+1∆t
(13)

Note that the velocity is updated before the position on
each loop. Once the positions of the particles have been
updated the entire process must be repeated again for ev-
ery time-step into the future[3].

3 Accuracy of the Model
Before any science is done with the simulation, it is im-
portant to check the method and it’s implementation pro-
duce physically accurate results. The easiest way of ver-
ifying the accuracy is to run a simulation of a problem
with a known solution and compare the results. The first
check I made was to verify that the potential around a sin-
gle particle produced the characteristic k/r curve. This
can be done by taking a 2D slice out of the potential dis-
tribution that crosses the particle. The result can be seen
in Figure (2). Note that unlike the PP method PM natu-
rally avoids singularities when r = 0. This isn’t for free,
however, and can cause inaccuracies as a result, see §5.

Figure 2: The potential distribution caused by a single
particle of unit mass. This is a slice through the 3D distri-
bution with one coordinate held at grid point 31 (of 64).

Once my implementation of PM gave physical results
for a single particle it was time to check the accuracy of

4



the simulation with multiple particles. One many particle
system with a known solution is the top hat collapse. The
name refers to a ’top hat’ shape made by the mass density
distribution, however in reality this system looks like a
spherical cluster of particles. The analytical solution can
be found by solving Newtons law of gravitation,

d2r

dt2
=
GM

r2
, (14)

directly using integration. The solution to (14) is a
parametric curve that depends on the total energy of the
system[9]. The curve predicts that the top hat will ini-
tially expand before collapsing back down, however, by
setting the initial velocity of the particles to zero this ex-
pansion can be ignored. Figure (3) shows the simulations
of this system. At first sight this simulation seems under-
whelming, there is a large difference between the results
and the analytical model. The error here is caused by the
periodic boundary conditions of the system. The parts of
the top hat closest to the edges feel more force as they
are closer to the other side of the top hat periodically. A
fix is to add buffer particles in the corners of the system.
These particles add a small extra force to the rest of the
top hat slowing down the collapse, so that the force is even
in all directions. This small decrease is enough to cause
the improvements seen in Figure (4). The agreement of
these curves justifies the accuracy of the PM method in
this context and more specifically my implementation of
the method.

The data points and associated uncertainties in these
simulations were calculated by repeating the simulation
103 times, and calculating the mean position and the error
on the mean. The error increasing with time I suspect
is due to the inaccuracies of the previous time-step being
compounded.

4 Formation of Structure
Taking advantage of the periodic boundaries, a universe
that is effectively infinite in size can be simulated. After
a large number of time-steps this ’effective’ infinity is no
longer valid - as the clumps of mass begin to cluster[8].
However, for the shorter time scales of structure forma-
tion the simulation is still valid.
The first simulation I ran was for 323 particles which can
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Figure 3: The collapse of a spherical top hat’s radius (as
a fraction of the simulation space) against the number of
time-steps. The dashed line represents the analytical so-
lution.

be seen in Figure (5), where the formation of small clus-
ters can be clearly observed. To create a larger contrast
with the background, this simulation was ran again with
643 particles. The result is displayed in Figure (6), with
the clusters being much more noticeable. This simulation
was also left to run for many more time-steps resulting in
a large cluster, which demonstrates the instability previ-
ously mentioned. The final result of this simulation can
be seen in Figure (7). A simulation very similar to the
previous was then conducted, with the mass of the parti-
cles increased by a factor of 104. The result had much
more structure than previously seen, but these were much
smaller in size, with some clusters forming strands of par-
ticles between neighbouring clusters. The strands pre-
sumably appear due to the wider potential-well caused by
the higher mass clusters, and the shorter inter-cluster dis-
tances, making it easier for the clusters to share particles.
The result of this simulation is in Figure (8).4

4All the simulations that produced the figures in this section used
’computer units’[6]. I chose to do this as the structure was the focus not
a numerical output.
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Figure 4: The collapse of a spherical top hat with buffer
particles in the outer corners to cancel the effects of the
periodic boundaries. The dashed line represents the ana-
lytical solution.

5 Shortcomings
Overall, the PM method isn’t perfect, with various short-
comings that I would like to highlight. For instance, the
method does not take into account close-encounter inter-
actions, rendering it almost useless at small length scales,
or in any system where the particles are likely to collide.
This is because the equation that the algorithm solves is
not exactly equation (14) but rather a slightly modified
version[4],

d2r

dt2
=

GM

r2 + η
, (15)

where η is a smoothing constant. It’s clear that for r2 � η
the algorithm will make a great approximation of (14) but
as they become comparable the results will differ.
A related issue is the selection of the mass assignment
scheme. CIC does a much better job of smoothing the
mass density distribution than NGP, but if the scheme cho-
sen uses too much smoothing the value of η changes caus-
ing the inaccuracies[4]. I chose to use NGP in my imple-
mentation, due to its simplicity, as well as slightly bet-

Figure 5: A simulation of 323 particles. Faint structures
can be observed.

ter results at shorter lengths scales, however, the scheme
has some problems that extend further than the issue of
smoothing. Since all the particles within a grid cube will
experience an equal acceleration, at the edges of a grid
cubes, lines of particles can coagulate as they all merge
with the neighbouring cube at once. In CIC because the
relative distance within the grid cube is taken into ac-
count, accelerations are not equal and this does not occur.

6 Summary

My implementation of the PM method successfully pro-
duced physical simulations of particles acting under the
influence of gravity. It was able to recreate the potential-
well produced by a single mass and model a top hat col-
lapse of multiple thousands of particles. The model, as
expected, deviated when performing the top hat collapse
due to interactions with itself through the periodic bound-
aries. This was then accounted for by adding buffer par-
ticles that would slow the over accelerated sections of the
top hat. This gives a curve which closely agrees with the
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Figure 6: This simulation has the same settings as Figure
(5) only it was ran with 643 particles. The structures can
now be seen with much higher contrast to the background.

analytical result, with an expected amount of deviation
due to the inaccuracies associated with close-encounter
interactions. Random distributions of particles were then
evolved in time to investigate the structures that form, and
the differences in these structures for different masses was
analysed.
To reflect, I would have made two changes I would have
made to my program. The first being the implementa-
tion of a CIC scheme. I underestimated the effect that
the mass assignment scheme would have on the simula-
tion accuracy. If had more time, I would have updated the
program to use a scheme with more smoothing than NGP.
The second would be to investigate the initial conditions
of my simulations in more depth. From reading papers
such as [1][5] I noticed the large amount of effort put into
the initial conditions of the simulations. This, of course,
makes perfect sense as the universe is not a random dis-
tribution of particles, as my simulations assumes. These
subtle changes in the initial conditions would affect the
overall evolution of the structures formed.

Figure 7: This is Figure (6) after an extended number of
time-steps, demonstrating that eventually the structure be-
comes unstable.
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